
1

Structural Compression of Packet Classification Trees
Xiang Wang1, 2, Zhi Liu1, 2, Yaxuan Qi2 and Jun Li2

1
Department of Automation, Tsinghua University, China

2
Research Institute of Information Technology, Tsinghua University, China

{xiang-wang11, zhiliu08}@mails.tsinghua.edu.cn, {yaxuan, junl}@tsinghua.edu.cn

ABSTRACT

Most of state-of-the-art packet classification algorithms employ

heuristics to trade off between classification speed and memory

usage. However, intelligent heuristics often result in complex data

structures in algorithm implementation. This brings difficulties to

the deployment and optimization of packet classification algo-

rithms. In this poster, a structural compression approach is pre-

sented for decision tree based packet classification algorithms.

This approach exploits the similarity in real-life filter sets to

achieve high compression ratio without loss of tree semantics.

1. INTRODUCTION
Packet classification has been studied for a long period, and

many decision tree based packet classification algorithms

have been proposed. Most of them trade worst-case search

time for memory space. They implement various strategies

of search space decomposition, because consistent cuttings

on the other hand usually introduce excessive overhead of

memory usage. For example, several algorithms set binth [1,

2] to control the load of linear search at leaf nodes, and take

variable-stride cuttings at internal nodes. Those techniques

not only hamper the guarantee of worst-case classification

time among all types of filter sets, but also limit the optimi-

zation of search data structure for hardware acceleration.

In this poster, we argue that the consistent cutting strategy

is the key to the improvement of both processing speed and

memory usage. The memory overhead of consistent strate-

gy is categorized into two types of redundancy: the local

redundancy usually exists in pointer arrays in each internal

node, and the global redundancy lurks in the space decom-

position model among all internal nodes.

This poster investigates those redundancies in fixed-stride

cutting trees, and illustrates the method to remove them

individually.

2. ALGORITHM
Structural redundancy can be illustrated based on a typical

HiCuts [1] tree. Figure 1 shows a 4-rule classifier and its

corresponding HiCuts Tree. Most of implementations of

HiCuts and similar algorithms use pointer array to address

child nodes and store the mapping between unit-spaces of

fixed-stride cutting and aggregated sub-spaces. It is obvious

that direct pointer addressing scheme brings too much

overhead of memory usage, as each pointer takes one word

length memory, which is regarded as local redundancy.

Furthermore, due to the similarity of the rule distribution in

the whole search space, several nodes share the same space

decomposition performed in their own sub-spaces. For ex-

ample, node-2 and node-3 have the same numbers of both

unit-space and sub-space. Besides, they both aggregate the

1
st
, 2

nd
 and 4

th
 unit-space to the 1

st
 sub-space, and map the

3
rd

 unit-space to the 2
nd

 sub-space. Each internal node

needs to store the mappings, which is regarded as global

redundancy. We propose a 3-step structural compression

algorithm to eliminate the redundancy. The first step re-

moves the pointer array. The second step compresses the

local redundancy by using a bitmap technique. And the

third step extracts the space decomposition from all nodes,

which is further aggregated into two shared memory.

STEP-1: Elimination of pointer array

We argue that it is the pointer array that hampers the reduc-

tion of both local and global redundancy. To reduce the

overhead introduced by the pointer array, the tree building

procedure bounds each tree node into fixed size and stores

nodes in consecutive memory. All nodes sharing the same

parent are viewed as siblings. The parent node only needs

to store its first child node address, and uses offset to ad-

dress other child nodes. As a consequence, the original

pointer array can be expressed using one base pointer and

one offset array. If the procedure takes 256-stride cutting

strategy, each array element can be stored within single

byte. The significance of this step is not only reducing the

overhead of storing pointers, but also providing the possi-

bility of compressing the global redundancy.

STEP-2: Elimination of local redundancy

node-0

cuts: X-4

P1P1 P3P2

node-2

cuts: X-4

P6P7P6P6

node-3

cuts: Y-4

P8P9P8P8

node-1

cuts: Y-2

P5P4

node-6

rule: R4

node-7

rule: R2

node-8

rule: R4

node-9

rule: R3

node-4

rule: R1

node-5

rule: R4

internal-node

leaf-node

Figure 1. 4-rule Classifier and HiCuts Tree

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

Y

X

R3R
2

R1

R4

P

2

In the previous step, each node uses a base pointer with an

offset array to address its child nodes, and the offset array

takes the majority of memory space in each node. In prac-

tice, vast internal nodes only have fewer child nodes, which

mean many consecutive unit-spaces will be aggregated into

the same sub-space [3]. As a consequence, the bitmap tech-

nique is employed to compress the offset array, which gen-

erates a bitmap and a compressed offset list. Figure 2

shows the classification tree which is ready for the third

compression step.

STEP-3: Elimination of global redundancy

After the formal two steps, it is observed that a great deal

of internal nodes has same bitmaps and offset lists, and the

number of unique bitmap and offset list are both relative

small in practical classifier. Based on this observation,

unique bitmaps and offset lists are extracted and stored in

two consecutive shared memories respectively, leaving two

indices in each internal node.

After the 3-step structural compression, the original classifi-

cation tree is reshaped into three lookup tables, and a com-

pact packet classification tree is obtained. Figure 3 shows the

compressed search data structure of classifier in Figure 1.

3. EVALUATION
We carry out the preliminary evaluation test on FW classi-

fier generated by classbench [4]. Table 1 compares the

numbers of bitmap and offset before and after elimination

of global redundancy. Figure 4 shows the memory size

comparison between original HiCuts tree, AggreCuts [3],

HyperSplit [2] and structural compressed tree. When

bounding to the same memory access time, HiCuts tree

needs about 2 orders memory usage than structural com-

pressed tree. Besides, the memory of structural compressed

tree is comparable to the one of HyperSplit, where the

memory access time of the latter is two times larger than

the former one.

4. CONCLUSION
This poster presents a structural compression approach to

eliminate redundancy in packet classification trees. It ex-

ploits the similarity residing in real-life filter sets, and

achieves high compression ratio in preliminary evaluation.

Our future work will apply structural compression to other

equal-sized space decomposition packet classification algo-

rithms with grouping of rules [5, 6].

5. REFERENCES
[1] P. Gupta and N. McKeown. “Classifying Packets with

Hierarchical Intelligent Cuttings,” in IEEE Micro, 2000.

[2] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li. “Packet Clas-

sification Algorithms: From Theory to Practice,” in

Proc. of INFOCOM, 2009.

[3] Y. Qi, B. Xu, F. He, B. Yang, J. Yu and J. Li. “Towards

High-performance Flow-level Packet Processing on Multi-

core Network Processors,” in Proc. of ANCS, 2007.

[4] ClassBench: A Packet Classification Benchmark.

http://www.arl.wustl.edu/classbench/

[5] B. Vamanan, G. Voskuilen and T. Vijaykumar.

“EffiCuts: Optimizing Packet Classification for Memory

and Throughput,” in Proc. of SIGCOMM, 2010.

[6] J. Fong, Y. Qi, J. Li and W. Jiang. “ParaSplit: A Scala-

ble Architecture on FPGA for Terabit Packet Classifica-

tion,” in Proc. of HOTI, 2012.

Figure 3. Classification Tree for Structural Compression

Figure 2. Classification Tree Ready for Elimination of

Global Redundancy

Table 1. Global Redundancy of Bitmap and Offset List

rule FW_100 FW_1K FW_5K FW_10K

total 6012 304185 1585.3K 4818.4K

uni bmp 116 703 2612 3713

uni off 23 109 293 499

Figure 4. Memory size of HiCuts, AggreCuts,

HyperSplit and structural compressed tree

node-0 Y P1off0bmp0 0 0 1 1

0 1 2

0 1 0

bitmap table

offset list table

bmp0

bmp1

off0

off1

node-1 X P4off1bmp1

node-2 Y P6off1bmp0

node-3 X P8off1bmp0

node-4 -- R1act2

node-5 -- R4act1

node-6 -- R4act1

node-7 -- R2act2

node-8 -- R4act1

node-9 -- R3act2 leaf-node

internal-node

0 1 0 0

node table

node-0

X

P1

node-1

node-4

rule: R1

node-5

rule: R4

node-6

rule: R4

node-7

rule: R2

node-8

rule: R4

node-9

rule: R3

0 0 1 1

0 1 2

Y

P4

0 1 0 0

0 1 0

node-2

X

P6

0 0 1 1

0 1 0

node-3

Y

P8

0 0 1 1

0 1

internal-node

leaf-node

0

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

FW100 FW1K FW5K FW10K

M
em

or
y U

sa
ge

 (K
B)

HiCuts

AggreCuts

HyperSplit

SC-Tree

