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ABSTRACT 

Most of state-of-the-art packet classification algorithms employ 

heuristics to trade off between classification speed and memory 

usage. However, intelligent heuristics often result in complex data 

structures in algorithm implementation. This brings difficulties to 

the deployment and optimization of packet classification algo-

rithms. In this poster, a structural compression approach is pre-

sented for decision tree based packet classification algorithms. 

This approach exploits the similarity in real-life filter sets to 

achieve high compression ratio without loss of tree semantics. 

1. INTRODUCTION 
Packet classification has been studied for a long period, and 

many decision tree based packet classification algorithms 

have been proposed. Most of them trade worst-case search 

time for memory space. They implement various strategies 

of search space decomposition, because consistent cuttings 

on the other hand usually introduce excessive overhead of 

memory usage. For example, several algorithms set binth [1, 

2] to control the load of linear search at leaf nodes, and take 

variable-stride cuttings at internal nodes. Those techniques 

not only hamper the guarantee of worst-case classification 

time among all types of filter sets, but also limit the optimi-

zation of search data structure for hardware acceleration.  

In this poster, we argue that the consistent cutting strategy 

is the key to the improvement of both processing speed and 

memory usage. The memory overhead of consistent strate-

gy is categorized into two types of redundancy: the local 

redundancy usually exists in pointer arrays in each internal 

node, and the global redundancy lurks in the space decom-

position model among all internal nodes.  

This poster investigates those redundancies in fixed-stride 

cutting trees, and illustrates the method to remove them 

individually. 

2. ALGORITHM 
Structural redundancy can be illustrated based on a typical 

HiCuts [1] tree. Figure 1 shows a 4-rule classifier and its 

corresponding HiCuts Tree. Most of implementations of 

HiCuts and similar algorithms use pointer array to address 

child nodes and store the mapping between unit-spaces of 

fixed-stride cutting and aggregated sub-spaces. It is obvious 

that direct pointer addressing scheme brings too much 

overhead of memory usage, as each pointer takes one word 

length memory, which is regarded as local redundancy. 

Furthermore, due to the similarity of the rule distribution in 

the whole search space, several nodes share the same space 

decomposition performed in their own sub-spaces. For ex-

ample, node-2 and node-3 have the same numbers of both 

unit-space and sub-space. Besides, they both aggregate the 

1
st
, 2

nd
 and 4

th
 unit-space to the 1

st
 sub-space, and map the 

3
rd

 unit-space to the 2
nd

 sub-space. Each internal node 

needs to store the mappings, which is regarded as global 

redundancy. We propose a 3-step structural compression 

algorithm to eliminate the redundancy. The first step re-

moves the pointer array. The second step compresses the 

local redundancy by using a bitmap technique. And the 

third step extracts the space decomposition from all nodes, 

which is further aggregated into two shared memory.  

STEP-1: Elimination of pointer array 

We argue that it is the pointer array that hampers the reduc-

tion of both local and global redundancy. To reduce the 

overhead introduced by the pointer array, the tree building 

procedure bounds each tree node into fixed size and stores 

nodes in consecutive memory. All nodes sharing the same 

parent are viewed as siblings. The parent node only needs 

to store its first child node address, and uses offset to ad-

dress other child nodes. As a consequence, the original 

pointer array can be expressed using one base pointer and 

one offset array. If the procedure takes 256-stride cutting 

strategy, each array element can be stored within single 

byte. The significance of this step is not only reducing the 

overhead of storing pointers, but also providing the possi-

bility of compressing the global redundancy.  

STEP-2: Elimination of local redundancy 
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Figure 1. 4-rule Classifier and HiCuts Tree 

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

Y

X

R3R
2

R1

R4

P



2 

 

In the previous step, each node uses a base pointer with an 

offset array to address its child nodes, and the offset array 

takes the majority of memory space in each node. In prac-

tice, vast internal nodes only have fewer child nodes, which 

mean many consecutive unit-spaces will be aggregated into 

the same sub-space [3]. As a consequence, the bitmap tech-

nique is employed to compress the offset array, which gen-

erates a bitmap and a compressed offset list. Figure 2 

shows the classification tree which is ready for the third 

compression step. 

STEP-3: Elimination of global redundancy 

After the formal two steps, it is observed that a great deal 

of internal nodes has same bitmaps and offset lists, and the 

number of unique bitmap and offset list are both relative 

small in practical classifier. Based on this observation, 

unique bitmaps and offset lists are extracted and stored in 

two consecutive shared memories respectively, leaving two 

indices in each internal node.  

After the 3-step structural compression, the original classifi-

cation tree is reshaped into three lookup tables, and a com-

pact packet classification tree is obtained. Figure 3 shows the 

compressed search data structure of classifier in Figure 1. 

3. EVALUATION 
We carry out the preliminary evaluation test on FW classi-

fier generated by classbench [4]. Table 1 compares the 

numbers of bitmap and offset before and after elimination 

of global redundancy. Figure 4 shows the memory size 

comparison between original HiCuts tree, AggreCuts [3], 

HyperSplit [2] and structural compressed tree. When 

bounding to the same memory access time, HiCuts tree 

needs about 2 orders memory usage than structural com-

pressed tree. Besides, the memory of structural compressed 

tree is comparable to the one of HyperSplit, where the 

memory access time of the latter is two times larger than 

the former one. 

4. CONCLUSION 
This poster presents a structural compression approach to 

eliminate redundancy in packet classification trees. It ex-

ploits the similarity residing in real-life filter sets, and 

achieves high compression ratio in preliminary evaluation. 

Our future work will apply structural compression to other 

equal-sized space decomposition packet classification algo-

rithms with grouping of rules [5, 6]. 
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Figure 3. Classification Tree for Structural Compression 

 
Figure 2. Classification Tree Ready for Elimination of 

Global Redundancy 

Table 1. Global Redundancy of Bitmap and Offset List  

rule FW_100 FW_1K FW_5K FW_10K 

total 6012 304185 1585.3K 4818.4K 

uni bmp 116 703 2612 3713 

uni off 23 109 293 499 

 

 
Figure 4. Memory size of HiCuts, AggreCuts, 

HyperSplit and structural compressed tree 
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