

AN EFFICIENT HYBRID ALGORITHM FOR MULTIDIMENSIONAL
PACKET CLASSIFICATION

Yaxuan Qi1 and Jun Li1,2

1 Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China, 100084
2 Tsinghua National Lab for Information Science and Technology (TNLIST), Beijing, China, 100084

{yaxuan, junl}@tsinghua.edu.cn

ABSTRACT
Multidimensional Packet Classification is one of the most
critical functions for network security devices such as
firewalls and intrusion detection systems. Due to the
worst case bounds found in computational geometry, most
of the existing algorithms for multidimensional packet
classification trade memory usage for search speed in
order to achieve better overall performance. Although
some of these algorithms are proved to be efficient on
small number of classification rules, they scale poorly in
either search time or memory usage when the number of
rules grows. In this paper, we propose an efficient hybrid
algorithm named sBits, which combines the advantages of
two best existing algorithms, RFC and HiCuts. Compared
to RFC and HiCuts, sBits uses 10 to 400 times less
memory storage and 30% to 50% less time in worst case
search. sBits also reduces the heavy computational burden
in pre-processing. Its full update time is 10 to 100 times
less than RFC and HiCuts.

KEY WORDS
Network security, Packet classification, ACL and IDS

1. Introduction
Keeping network operation and information exchange
secure and efficient is highly desired in today’s Internet
communication. A variety of security services such as
access control in firewalls and protocol analysis in IDS
require a discrimination of packets based on the multiple
fields of packet headers, which is called multidimensional
packet classification.

Although there has been quite a few papers published
on multidimensional packet classification [1, 3, 4, 5, 6, 7, 8,
9, 11, 13, 20] in recent years, researchers in both academic
and industry continue to seek better solutions due to the
ever increasing importance and requirements in today’s
high performance policy enforcing networks. The need
for novel algorithms comes:

a. Hardware Limits: Currently, to obtain multi-Gbps
multidimensional packet classification rate, there are only
a few ASIC/FPGA products. Although hardware-based
devices offer a good solution for application with small
number of rules, such as those using TCAM, they
consume too much electric power and board area for large
rule sets [8]. In addition, hardware solutions usually mean
higher cost for R&D and production, and lower flexibility
in term of modification or upgrade. Therefore, it is worth

looking for alternative solutions to overcome the restrains
in hardware solutions.

b. Performance Limits: Due to the worst case bounds
in computational geometry, most multidimensional packet
classification algorithms trade memory usage for search
speed in order to achieve better overall performance.
However, even the best reported algorithms [1, 7] fail to
provide ideal performance when tested on some real-life
rule sets with large number of rules [19].

In this paper, we propose an efficient packet
classification algorithm that outperforms the best
published results in recent literatures [1, 3, 4, 7]. Main
contribution of this paper includes:

a. New Methodology for Algorithm Analysis:
Different from the previous descriptional and dissectional
algorithm comparison and categorization in [16, 17, 19],
we proposed a refined generic framework to analyze
existing algorithms. Such an analysis helps to find more
efficient hybrid algorithms that leverage on the
advantages of other popular algorithms to reach much
higher level of performance.

b. An Efficient Hybrid Algorithm: In this paper, we
introduce an efficient hybrid algorithm named Shifting
Bits, sBits in short. The overall data structure constructed
by sBits is a decision tree similar to those of HiCuts [1]
and its variations [7, 14]. While at each internal node an
indexing mechanism is adopted, which can be viewed as
an extension of the lookup tables used in RFC [3] and its
variation [4].

c. Comprehensive Experiments and Evaluations:
Software implementation of sBits and other popular
algorithms [1, 3, 4, 7] has been developed with our best
effort to make sure the fairness of our result comparison
and analysis in experimental study. Thorough
comparisons are done with several real-life rule sets, as
well as synthetic ones. Experimental results include worst
case search time, overall memory usage, full update time,
and scalability on large rule sets.
 The rest of the paper is organized as follows. Section
2 states the problem of packet classification; Section 3
analyzes prior work; Section 4 describes the proposed
algorithm sBits; Section 5 illustrates the experimental
results; as a summary, Section 6 states our conclusions.

2. Problem Definition and Complexity
Multidimensional packet classification classifies a packet
based on multiple fields of the packet header.

547-027 185

nicholas

Mathematically, a packet P is said to match a particular
rule R, if the ith field of the header of P satisfies the
regular expression R[i], for all 0 i F≤ < . If a packet P
matches multiple rules, the matching rule with the highest
priority is returned.

Multidimensional packet classification can be viewed
as a point location problem in computational geometry,
which is inherently hard to solve [16]. It has been proved
that the best bounds for point location in N non-
overlapping F-dimensional hyper-rectangles are ()O N
storage space with 1(log)FO N− search time, or (log)O N
search time with ()FO N storage space [2]. However, in
multidimensional packet classification problems, rules
(hyper-rectangles in the multidimensional search space)
may overlap, making classification at least as hard as
point location. Moreover, the large constant hidden in the

()O ⋅ notation also impacts actual performance severely in
practical implementation [19].

Although the theoretical bounds make it impossible
to design a single algorithm that performs well for all
cases, fortunately, real-life rule sets have some inherent
characteristics that can be exploited to reduce the
complexity in both search time and storage space [19].
There have been various statistics and characteristics of
real-life rule sets presented and also exploited in the
proposed algorithms [3, 8, 9, 17, 18]. Some algorithms like
RFC and HiCuts achieve promising results in comparison
to prior schemes. Other research, such as [11, 14], make
efforts to take more factors (e.g. word width, adjustable
constants) into consideration so as to give more precise
theoretical bounds. Research has also been carried out in
introducing traffic flow statistics in addition to rule
statistics for using more heuristics that help in
classification [13, 15]. All these studies provide us with
thorough understanding of the existing multi-dimensional
packet classification algorithms and hence motivate our
research in this paper.

3. Analysis of Prior Work
3.1 The Framework for Algorithm Analysis
Surveys and taxonomies of prior work on packet
classification [16, 17] break the design space of existing
algorithms based on the high-level approach, such as
exhaustive search, geometric tries and heuristic
algorithms. This kind of categorization is helpful for
algorithm description, because algorithms fall in the same
category have similar data structures. Different from such
a descriptional taxonomy, a dissectional one is also
suggested that categorised packet classification
algorithms according to their differences in space
decomposition schemes and classifier data structures [19].
Such a dissectional taxonomy unveils the cohering
relation lying in different algorithms. To balance the
advantages of both methodologies, in this paper, we adopt
a Divide-and-Conquer strategy in the study of existing
algorithms. Divide means the partition of the search space
and its corresponding rule set, while Conquer refers to the

packet searching strategies. Two generic procedures can
be deduced from most existing algorithms:

a. Partition the Search Space: In this procedure, the
search space is partitioned into certain number of sub-
spaces. Each sub-space is allocated with a subset of rules
to create a new but scaled down search problem. By
recursively partition the search spaces, as well as the
corresponding rule sets, the complexity of the original
classification problem is reduced, so the search result can
be obtained by solving a series of sub-problems instead of
doing exhaustive search in the entire search space with all
rules.

b. Search the Packet: This procedure traverses the
data-structure constructed by a particular algorithm to
obtain the classification result. More specifically, packet
search answers the questions of how to locate a point into
its corresponding sub-space at each stage and how to go
from current search stage to the next. Data structures of
different classifiers, such as decision trees and lookup
tables, represent different techniques adopted by each
algorithm in the search procedure.
 The following part of this section analyzes how the
different implementation of these two procedures in
existing packet classification algorithms.

3.2 Space Partition
There are two types of partition techniques adopted by
existing algorithms: One uses geometric tries or trees
(trie-based) while the other bases on rule projections
(projection-based).

Trie-based algorithms partition the search space into
2w equal-sized sub-spaces at each stage, where w refers to
the stride, determining the number of sub-spaces. More
specifically, binary tries, adopted in [5, 6, 8], partition the
search space into 2 sub-spaces (w=1) at each stage, while
multi-bit tries partition the search space into 2w (w>1)
sub-spaces. Decision trees in [1, 7, 11, 14] can be viewed
as multi-bit tries with various stride in different level (w
variable). Binary trie has at least 2(log | |)O U in query
time, where U denotes the entire search space (the
Universe) and |U| is the full range covered by U, e.g. for
the common 5-field search, binary trie needs about 100
memory accesses. Multi-bit tries improve the search time
to 2(log | | /)O U w but tends to require larger storage.

Because trie-based algorithms implement uniform
partitions, a single rule (specified by ranges) might be cut
into fragments in multiple dimensions. There are two
ways to allocate rules for sub-spaces: Range-to-prefix
mapping for longest prefix matching and rule-duplication
for range matching. For binary tries like Hierarchical Trie
[16] and Grid-of-Trie [5], the sub-space at each node can
be described by a prefix; hence the sub-space itself
represents the longest matching prefix (rule). For multi-bit
tries like decision trees in HiCuts and HyperCuts, each
sub-space is allocated with a colliding rule set, i.e. all
rules collide with the sub-space. To reduce the rule
redundancy, G-filters allocate each sub-space with

186

different type of ruleset: cross set, fallback set and cover
set [14].

Projection-based algorithms partition the search
space according to the rule projection on each dimension.
This technique is adopted by the algorithms proposed in
[3, 4]. Projection-based methods have less redundancy in
space partition because each segment is well cut to fit the
rules. There is no need for further partition of each
segment.

It is relatively simple to allocate rules for algorithms
using projection-based partition, because each segment
(representing a sub-space) is fully covered by the
projection of particular rules. Hence this set of rules is
allocated to the sub-space.

3.3 Packet Search
Most algorithms partition the search space along a single
dimension at each stage. Algorithms that simultaneously
partition the search space in multiple dimensions [7, 14]
can be viewed as a multi-step single-dimensional partition
(because all the separating hyper-planes are parallel to the
coordinate axes). Therefore, each algorithm should
answer how to locate a point into its corresponding sub-
space along each dimension and how to link the
sequential search stages going through multiple
dimensions.

Trie-based algorithms works well for packet search
due to equal-sized partition. At each node, the 2w sub-
spaces are associated with a pointer index of 2w entries.
These pointers connect the sequential nodes and lead the
way for search. To locate the packet into its
corresponding sub-space, trie-based algorithms need O(1)
time at each node.
It is relatively more complicated to locate a packet in
projection-based partition. Because each segment may
have different size, the search space is partitioned non-
uniformly. It requires 2(log)O N query time to do a
binary search along each dimension to locate the packet in
the corresponding segment [4]. P. Gupta in [3] suggested
an indexing table to store the rule segments IDs and
achieved O(1) query time, but this scheme is hard to
implement when index tables contain a very large number
of entries, such as the IP address in IPv6.

As a summary, Figure 1 shows the generic
framework for categorization of existing packet
classification algorithms.

4. The Proposed Algorithm
We follow the generic procedures in designing the new
algorithm. In this paper, we propose a novel algorithm
which partitions the search space using a fixed stride
decision tree and performs packet search with extended
ID indexes. Due to the fixed-stride, the algorithm checks
each w bits in the packet header at each node, so we call
the proposed algorithm Shifting Bits, or sBits in short.

Figure 1. Categorization of existing multi-dimensional packet

classification algorithms.

4.1 Space Partition with Decision Tree
At each internal tree node, space partition can be applied
on both single and multiple dimensions. Multi-
dimensional space partition is proved to be more effective
both in worst case search speed and memory usage. sBits
partitions the search space on the most discriminative
dimensions, and the dimension selection mechanism is
similar to HiCuts and HyperCuts [1, 7].

Trie-based partition uniformly divides the search
space into 2w sub-spaces. A larger stride w, i.e. larger
number of sub-spaces, can cut down the depth of the tree
while need more increase the storage requirements. To
ensure the worst case search time, we use a big stride w.
In the implementation of sBits, we set w=4~8.

In this section, we describe the space partition
scheme by a 2-D sample rule set, which is shown in
Figure 2.

First, the search space is partitioned into 2w equal-
sized sub-spaces on each dimension. Each intersection of
these sub-spaces is called a unit-space because it is the
minimum unit can be discriminated in current stage.
Figure 3 describes the equal-sized partition and the
consequent unit-spaces respectively.

Then, adjacent unit-spaces are aggregated if they
contain the same colliding rule set along each partitioned
dimension. Figure 4 and Figure 5 illustrate the space
aggregation result for the 2-D example.

Actually, after the aggregation step, the current
search space is partitioned into sub-spaces with colliding
rules and hence initiates new search problems.

4.2 Packet Search with ID Index
sBits recursively partitions the search space into sub-
spaces and constructs a decision tree to link each search
space with its sub-spaces. The search of a packet P is to
trace down the tree from root node to one of the leaf
nodes. Thus, the construction of an appropriate data
structure for fast packet location in its corresponding sub-
space becomes the next key issue in packet search.

187

Figure 2. A Sample Rule Set
with six 2-D rules in the X-Y
plane. Each rule appears to be
a rectangle in the search space.
R4 is overlapped by R1 and
R3.

Figure 3. Unit-Spaces. The
search space (X-Y plane) is
partitioned into 4x4=16 unit-
spaces; each has the same size
of 2x2 squares in the X-Y
plane.

Figure 4. Aggregation of
Unit-spaces. Along both X
and Y dimensions, unit-space
with the same rule projection
are aggregated.

Figure 5. Child Nodes. For
example, child node C3
corresponds to sub-space of
{[100,111], [000,001]}
associated with R3 and R4.

Figure 6. Pointer Matrix. The
4x4 pointers map each of the
16 unit-spaces into one of the
9 child nodes (C1~C9). For
example, if a packet drops in
the unit-space [U2, U4], then
P24 will lead the way to C6
for further search.

Figure 7. ID Indexes. The
2x4 space IDs map the 16
unit-spaces into 9 child nodes.
If one packet drops in the
unit-space [U2, U4], then by
computing (2-1)*3+3=6, we
know that this packet belongs
to child node C6.

A direct way to link current search space with their

sub-spaces is to build a pointer matrix; each pointer refers
to a child node (see Figure 6). Assume that the search
space is partitioned along d dimensions simultaneously.
The pointer matrix at each internal node then requires
O(2wd) storage, which precludes the choice of larger
stride w. Existing algorithms, such as [1, 7], cut down the
size of index pointer by choosing modest w for each node.
Instead, we solve this problem by using ID indexes (see
Figure 7) rather than the pointer matrix.

First we assigned each (aggregated) sub-space with a
space ID. Then we create a 2w-entry ID index for each
dimension to map unit-spaces into the sub-spaces of each

child nodes. By carefully designing the data structure, we
can fix the size of each node in order to save the child
nodes in continuous memory with a constant increment
(node size) in memory address. Hence the memory
address of corresponding child node can be directly
obtained using the space ID and the address offset of the
first child node. Because the space complexity of each
internal node is reduced from O(2wd) to O(*2wd), a
greedy choice of w then makes sense.

4.3 Discussion
As a summary, we discuss the ideas and methods in sBits
on the following aspects:

a. Stride: Fixed or Non-fixed? Because searching
speed is the most important performance metric in high-
end products, large and fixed stride ensures the worst case
search time. Algorithms like HiCuts and HyperCuts can
not use a large w, because the pointer matrix they use for
packet search requires very large memory space
accordingly. In addition, searching for an optimized w in
HiCuts and HyperCuts is time-consuming. A fixed stride
will also significantly reduce the pre-processing time.

b. Partition: Single-dimensional or
Multidimensional? At each internal node, sBits suggest to
partition the search space in multiple dimensions.
Although a multi-step single dimensional partition seems
to be able to perform more delicate optimization for
partitions along each dimension, heuristics required for
such optimization in all cases are hard to achieve.
Moreover, even if such heuristics were obtained, they
might be too complicated to be used due to the heavy
computing burden. Thus sBits selects the most f
discriminative dimensions to partition.

c. Aggregation: Adjacent or Non-adjacent? Non-
adjacent unit-spaces may have same rules colliding with
them, and hence according to projection-based partition,
all these unit-spaces are assigned with same space ID.
However, different from the exhaustive partition based on
rule projection, the aggregated sub-spaces will be further
partitioned. So the child nodes cannot handle non-
adjacent sub-spaces. Even if the non-adjacent spaces can
be converted to adjacent space by filling up the empty
space with the same colliding rules, aggregating non-
adjacent unit-spaces requires 2(*2)wO N time for each
dimension, while adjacent aggregation needs only

(*2)wO N time.
The original intention of our research is to combine

the advantages of existing best algorithms. sBits can be
viewed as a hybrid algorithm in terms of space partition
and packet search. Globally, sBits partitions the search
space with a decision tree structure [1, 7, 14]. Locally, at
each internal node, the search step is implemented by
table lookup [3, 4] using ID indexes.

188

5. Experimental Results
5.1 Rule Sets
We evaluate sBits both on real-life firewall and core
router rule sets as well as on synthetic rule sets. The real-
life rule sets are obtained from enterprise networks and
major ISPs. Firewall rule sets are named FW1, FW2,
FW3; Core router rule sets are named CR1, CR2, CR3,
CR4; Synthetic rule set is SYN1, SYN2… SYN20. The
largest real-life rule set (CR4) contains 1945 rules, and
the largest synthetic rule set contains 2000 rules. All rules
are 5-dimensional with 32-bit source and destination IP
addresses represented as prefixes, 16-bit source and
destination port numbers represented as ranges, and an 8-
bit protocol.

5.2 Metrics
All the algorithms in our experiment are written in C
codes and running in a PC with Pentium4 CPU. To test
the performance of all the algorithms on both real-life and
synthetic rule sets, we examine, for each rule set, the
number of memory accesses as the search time (Time)
and the amount of memory usage (Space) for the whole
data structure built by the algorithms. Different from [7, 8]
(where one memory access is a single 32-bit word access)
one memory access here refers to reading a certain
number (1~8) of continuous memory words. This is
because today’s most DRAM support burst mode reading,
i.e. the time spent in reading continuous memory is very
close to that of reading a single word.

5.3 Performance on Real-life Rule Sets
We first compare sBits with the algorithms of the best
reported performance, including HiCuts, HyperCuts, RFC
and HSM, on real-life rule sets. Due to patent issues, we
were not able to obtain source codes from the authors and
thus the codes of these algorithms are all written by
ourselves. We make our best effort to make sure the
fairness of our result analysis. Experimental results show
that our codes achieved nearly the same performance
compared to the experimental results reported in [7].

In comparison with algorithms using Trie-based
partition, Table 1 and Table 2 compare sBits with HiCuts
& HyperCuts respectively on spatial and temporal
performance. We can see from these tables that, for all
real-life rule sets, sBits achieves at least an order of
improvement in memory usage, as well as a superior
worst case query time.

To compare with the algorithms using Projection-
based partition, Table 3 shows the memory usage of RFC,
HSM and sBits. For the largest real-life rule set CR4,
sBits uses 23 times less memory than HSM and 37 times
less than RFC. Although the search speed of RFC and
HSM are 50%~100% faster that of sBits, they require
parallel searches in different fields, while sBits can be
fully pipelined to implement for fast search.

Table 4 shows the full update time of typical heuristic
algorithms in comparison with that of sBits. We see that
even with the largest rule sets, sBits uses less than 1

second to construct the decision tree. In comparison, both
RFC and HiCuts need tens of seconds in generating the
whole data structure for search.

5.4 Performance on Synthetic Rule Sets
In order to compare their stability with large number of
rules, we test sBits and HyperCuts on a series of synthetic
rule sets. Although results on real-life rule sets are more
persuasive, this task is made harder because the rule sets
available to us is quite limited. Synthetic rule sets have
size from 100 to 2000 and are named SYN# according to
the number of rules (SYN1 has 100 rules and SYN20 has
2000 rules). We create these rule sets in the same way as
[7], and all of these rules have identical distribution at
each field.

Memory usage of HyperCuts and sBits on each
synthetic rule set is depicted sequentially in Figure 8. We
see that both HyperCuts and sBits perform stable with the
number of rules less than 1700. But when the number of
rules becomes larger (than 1700), the memory usage of
HyperCuts has a sharp increase in comparison with that of
sBits.

Similar results are obtained when we test other
algorithms on these synthetic rule sets. sBits is proved to
be more stable than all other algorithms we have tested.
Such a conclusion is also supported by the results in Table
1 and Table 2 with real-life rule sets.

Table 1. Memory usage comparison:
sBits and HiCuts & HyperCuts (Unit: 32-bit word)

 No. Rules HiCuts HyperCuts sBits
FW1 68 5,443 35,401 420
FW2 136 10,779 69,782 924
FW3 340 24,645 172,932 2,331
CR1 500 29,409 89,005 3,612
CR2 1000 979,736 871,541 28,287
CR3 1530 13,606,858 480,225 29,204
CR4 1945 5,928,724 672,442 43,183

Table 2. Worst case search time comparison:

sBits vs. HiCuts/HyperCuts. (Unit: Memory Access)
 No. Rules HiCuts HyperCuts sBits

FW1 68 19 16 15
FW2 136 20 16 15
FW3 340 20 16 15
CR1 500 24 17 16
CR2 1000 30 17 16
CR3 1530 36 18 16
CR4 1945 34 18 17

Table 3. Memory usage comparison:

sBits vs. RFC & HSM (Unit: 32-bit word)
 No. Rules RFC HSM sBits

FW1 68 200,652 10,223 420
FW2 136 209,602 27,657 924
FW3 340 296,382 65,581 2,331
CR1 500 264,987 29,814 3,612
CR2 1000 530,539 230,716 28,287
CR3 1530 863,476 486,857 29,204
CR4 1945 1,580,005 989,161 43,183

189

Table 4. Update time comparison:
sBits vs. RFC & HiCuts (Unit: milliseconds)

 No. Rules RFC HiCuts sBits
FW1 68 1,492 73 1
FW2 136 1,762 211 22
FW3 340 3,185 465 40
CR1 500 4,597 409 56
CR2 1000 12,929 7661 261
CR3 1530 37,754 22,522 281
CR4 1945 67,087 21,248 350

Figure 8. Stability: sBits vs. HyperCuts. (on synthetic rule sets
SYN1, SYN2, …, SYN20)

6. Conclusion
Recall the incisive conclusion made by Pankaj Gupta in [1]
that: “The theoretical bounds tell us that it is not possible
to arrive at a practical worst case solution. Fortunately,
we don't have to; No single algorithm will perform well
for all cases. Hence a hybrid scheme might be able to
combine the advantages of several different approaches.”
In this paper, we first suggest two generic procedures for
packet classification problem, and then according to these
two procedures we make a dissectional analysis of the
existing algorithms to find their cohering relations. The
algorithm sBits proposed in this paper is a hybrid scheme
which uses a fixed-stride decision tree to partition the
search space, along with an ID indexing data structure for
packet search. Experimental results shows that sBits
outperforms the best results of existing algorithms.

Future work can be conducted to introduce network
traffic statistics into packet classification to dynamically
optimize the decision tree structure and hence improve the
average search speed. Future work also includes the
implementation of sBits on new generation network
processors. The codes we wrote for sBits, HiCuts,
HyperCuts, RFC and HSM will be publicly available to
encourage experimentation with classification algorithms.

Acknowledgements
This work is sponsored by the Intel IXA University
Program.

References
[1] P. Gupta and N. McKeown, Packet classification using
hierarchical intelligent cuttings, Proc. Hot Interconnects, 1999.

[2] M.H. Overmars and A.F. van der Stappen, Range
searching and point location among fat objects, Journal of
Algorithms, 21(3), 1996, 629-656.
[3] P. Gupta and N. McKeown, Packet classification on
multiple fields, Proc. ACM SIGCOMM, 1999, 147~160.
[4] B. Xu, D. Jiang, and J. Li, HSM: A fast packet
classification algorithm, Proc. 19th IEEE International
Conference on Advanced Information Networking and
Applications (AINA), Taiwan, 2005, 1: 987-992.
[5] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel,
Fast and scalable layer four switching, Proc. ACM SIGCOMM,
1998, 191-202.
[6] F. Baboescu and G. Varghese, Scalable packet
classification, Proc. ACM SIGCOMM, 2001, 199-210.
[7] S. Singh, F. Baboescu, G. Varghese and J. Wang, Packet
classification using multidimensional cutting. Proc. ACM
SIGCOMM, 2003, 213-224.
[8] F. Baboescu, S. Singh and G. Varghese, Packet
classification for core routers: Is there an alternative to CAMs?
Proc. IEEE INFOCOM, 2003, 1:53-63.
[9] V.Srinivasan, S.Suri and G.Varghese, Packet
classification using tuple space search, Proc. ACM SIGCOMM,
1999, 135-146.
[10] J. van Lunteren and T. Engbersen, Fast and scalable
packet classification, IEEE Journal on Selected Areas in
Communications 21(4), 2003, 560-571.
[11] A. Feldman and S. Muthukrishnan. Tradeoffs for packet
classification, Proc. IEEE INFOCOM, 2000, 3: 1193-1202.
[12] T. Lakshman and D. Stiliadis, High speed policy-based
packet forwarding using efficient multi-dimensional range
matching, Proc. ACM SIGCOMM, 1998, 203-214.
[13] T.Y.C Woo, A modular approach to packet classification:
algorithms and results, Proc. IEEE INFOCOM, 2000, 3:1213-
1222.
[14] F. Geraci, M. Pellegrini and P. Pisati, Packet
classification via improved space decomposition Techniques,
Proc. IEEE INFOCOM, 2005, 1:304-312.
[15] Y. Qi and J. Li, Dynamic cuttings: packet classification
with network traffic statistics, 3rd Proc. International Trusted
Internet Workshop, 2004.
[16] P. Gupta and N. McKewon, Algorithms for packet
classification, IEEE Network 15(2), 2001, 24-32.
[17] D.E. Taylor, Survey and taxonomy of packet
classification techniques, ACM Computing Surveys 37(3), 2005,
238-275.
[18] M.E. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.T.
Campbell, Directions in packet classification for network
processors, Proc. 2nd Workshop on Network Processors, 2003.
[19] Y. Qi, B. Xu and J. Li, Performance evaluation and
improvement of algorithmic approaches for packet classification,
Proc. International Conference on Network and Services, 2005.
[20] D. Liu, B. Hua, X. Hu and X. Tang, High-performance
packet classification algorithm for many-core and multithreaded
network processor, Proc. International Conference on Compiler,
Architecture, and Synthesis for Embedded Systems (CASES),
2006, to appear.

190

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

